Перевод: со всех языков на все языки

со всех языков на все языки

непосредственно измеряемая величина

  • 1 непосредственно измеряемая величина

    Dictionnaire russe-français universel > непосредственно измеряемая величина

  • 2 влияющая величина

    1. interferent
    2. influencing quantity
    3. influence variable
    4. influence quantity
    5. influence factors

     

    влияющая величина
    Величина, измерение которой не предусмотрено данным средством измерений, но оказывающая влияние на результаты измерений величины, для которой предназначено средство измерений (ОСТ 45.159-2000.1 Термины и определения (Минсвязи России)).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    3.4 влияющая величина (influence variable): Переменная, влияющая на соотношение между истинными значениями исследуемой характеристики качества воздуха и соответствующими результатами измерений (например, на свободный член или угловой коэффициент градуировочной характеристики, или на степень разброса результатов измерений относительно градуировочной характеристики).

    Источник: ГОСТ Р ИСО 9169-2006: Качество воздуха. Определение характеристик методик выполнения измерений оригинал документа

    3.5.1 влияющая величина (influencing quantity): Любая воздействующая величина, способная изменить определенное функционирование УЗО.

    Источник: ГОСТ Р МЭК 60755-2012: Общие требования к защитным устройствам, управляемым дифференциальным (остаточным) током оригинал документа

    3.24 влияющая величина (influence quantity): Величина, которая не представляет собой объект измерения, но ее изменение влияет на отношение между показанием и результатом измерения. (См. стандарт [11], статья 3.1.14.)

    Примечание - Влияющая величина может быть внешней или внутренней по отношению к измерительной аппаратуре. Изменение значения одной влияющей величины в пределах ее диапазона измерения может влиять на погрешность, обусловленную воздействием другой влияющей величины. Измеряемая величина или ее параметр может непосредственно воздействовать как влияющая величина. Например, для вольтметра изменение значения измеряемого напряжения может приводить к дополнительной погрешности из-за нелинейности или изменение частоты напряжения может также вызывать дополнительную погрешность.

    Источник: ГОСТ Р 54127-1-2010: Сети электрические распределительные низковольтные напряжением до 1000 В переменного тока и 1500 В постоянного тока. Электробезопасность. Аппаратура для испытания, измерения или контроля средств защиты. Часть 1. Общие требования оригинал документа

    влияющая величина (influence quantity): Величина, которая не является измеряемой, но оказывает влияние на результат измерений.

    [Международный словарь [1]]

    (Например, температура или уровень влажности наблюдаются или записываются в момент измерений).

    Источник: ГОСТ Р 8.726-2010: Государственная система обеспечения единства измерений. Датчики весоизмерительные. Общие технические требования. Методы испытаний оригинал документа

    3.13 влияющая величина (influence quantity): Величина, которая не представляет собой объект измерения, но влияет на результат измерения.

    Примечания

    1. Влияющая величина может быть как внешним, так и внутренним фактором в отношении газоанализатора.

    2. Когда значение одной из влияющих величин изменяется в пределах своего диапазона, может возникнуть погрешность из-за другой влияющей величины.

    3. Измеряемая величина или параметры ее состояния могут быть самостоятельно действующими влияющими величинами. Например, для инфракрасного анализатора водяного пара парциальное давление водяного пара влияет на спектр поглощения так, что длинная ячейка при низком парциальном давлении воды не может моделироваться короткой ячейкой с более высоким парциальным давлением.

    Источник: ГОСТ Р МЭК 61207-1-2009: Газоанализаторы. Выражение эксплуатационных характеристик. Часть 1. Общие положения оригинал документа

    3.12 влияющая величина (influence quantity): Любая величина, которая может оказать влияние на рабочие характеристики СИ.

    Примечание - Влияющая величина обычно является внешним фактором, воздействующим на СИ.

    Источник: ГОСТ Р 51317.4.30-2008: Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии оригинал документа

    3.1.34 влияющая величина (influence quantity): Величина, не являющаяся объектом измерения, но влияющая на значение измеряемой величины или показания измерительной аппаратуры [МЭК 359,4.8].

    Примечание - Влияющая величина может быть внешней или внутренней по отношению к измерительной аппаратуре. Когда значение одной влияющей величины изменяется в пределах ее диапазона измерения, это может влиять на погрешность, обусловленную воздействием другой влияющей величины. Измеряемая величина или ее параметр могут сами воздействовать как влияющая величина. Например, для вольтметра значение измеряемого напряжения может приводить к дополнительной погрешности из-за нелинейности, или частота напряжения может также вызывать дополнительную погрешность.

    Источник: ГОСТ Р МЭК 61557-1-2005: Сети электрические распределительные низковольтные напряжением до 1000 В переменного тока и 1500 В постоянного тока. Электробезопасность. Аппаратура для испытания, измерения или контроля средств защиты. Часть 1. Общие требования оригинал документа

    4.6 влияющая величина (influence factors): Величина, не являющаяся измеряемой, но оказывающая влияние на значение измеряемой величины или показания теплосчетчика.

    Источник: ГОСТ Р ЕН 1434-1-2011: Теплосчетчики. Часть 1. Общие требования

    Русско-английский словарь нормативно-технической терминологии > влияющая величина

  • 3 grandeur

    f
    величина □ vraie grandeur истинная величина; en vraie grandeur в натуральную величину (см. также grandeurs)
    grandeur de comparaison — сравниваемая величина; эталонная величина
    grandeur du défaut — величина ошибки; величина погрешности
    grandeur donnée (за)данная величина
    grandeur E d'un servo-mécanisme — см. grandeur d'entrée d'un servo-mécanisme
    grandeur enregistrée — фиксируемый параметр; записываемая [регистрируемая] величина
    grandeur d'entrée — величина на входе, входная величина
    grandeur de l'erreur — см. grandeur du défaut
    grandeur d'exécution — натуральная величина; действительный размер; рабочий размер
    grandeur mesurable (со)измеримая величина
    grandeur de référence — эталонная величина; контрольное значение
    grandeur de sortie — величина на выходе, выходная величина
    grandeur théorique — теоретическая [расчётная] величина
    grandeur vectorielle — векторная величина, вектор

    Français-Russe dictionnaire de génie mécanique > grandeur

  • 4 величины эквивалента дозы

    1. dose equivalent quantities

     

    величины эквивалента дозы
    Эквивалент амбиентной дозы, H*(d) ambient dose equivalent, H*(d). Эквивалент дозы, который создается соответственно достроенным и распространенным полем в стандартном шаре МКРЕ на глубине d по радиусу, имеющему направление, противоположное направлению распространения поля. Параметр, определенный в некоторой точке в поле излучения. Применяется как непосредственно измеряемая величина, которая представляет (в качестве замены) эффективную дозу для использования при мониторинге внешнего облучения. Рекомендуемая глубина d для сильнопроникающего излучения равна 10 мм. Эквивалент направленной дозы, H(d,) directional dose equivalent, H(d,). Эквивалент дозы, который создается соответственно достроенным и распространенным полем в стандартном шаре МКРЕ на глубине d по радиусу с определенным направлением. Параметр, определенный в некоторой точке в поле излучения. Применяется как непосредственно измеряемая величина, которая представляет (в качестве замены) эквивалентную дозу в коже для использования при мониторинге внешнего облучения. Рекомендуемая глубина d для слабопроникающего излучения равна 0,07 мм. Эквивалент персональной (индивидуальной) дозы, Hp(d) personal dose equivalent, Hp(d) Эквивалент дозы в мягкой ткани ниже указанной точки на теле на соответствующей глубине d. Параметр, применяемый в ОНБ в виде непосредственно измеряемой величины, которая представляет (в качестве замены) эквивалентную дозу в тканях или органах, или (с d = 10 мм) эффективную дозу при индивидуальном мониторинге (индивидуальном дозиметрическом контроле) внешнего облучения. Рекомендованные значения d равны 10 мм для сильнопроникающего излучения и 0,07 мм для слабопроникающего излучения. ‘Мягкая ткань’ обычно интерпретируется как стандартный шар МКРЕ. Рекомендованы Международной комиссией по радиационным единицам и измерениям [17, 18] как упрощение двух разных терминов – эквивалент индивидуальной дозы, проникающее излучение, Hp(d) individual dose equivalent, penetrating, Hp(d) и эквивалент индивидуальной дозы, поверхностное излучение, Hs(d) individual dose equivalent, superficial, Hs(d), определение которых приводится в [19].
    [Глоссарий МАГАТЭ по вопросам безопасности]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > величины эквивалента дозы

  • 5 dose equivalent quantities

    1. величины эквивалента дозы

     

    величины эквивалента дозы
    Эквивалент амбиентной дозы, H*(d) ambient dose equivalent, H*(d). Эквивалент дозы, который создается соответственно достроенным и распространенным полем в стандартном шаре МКРЕ на глубине d по радиусу, имеющему направление, противоположное направлению распространения поля. Параметр, определенный в некоторой точке в поле излучения. Применяется как непосредственно измеряемая величина, которая представляет (в качестве замены) эффективную дозу для использования при мониторинге внешнего облучения. Рекомендуемая глубина d для сильнопроникающего излучения равна 10 мм. Эквивалент направленной дозы, H(d,) directional dose equivalent, H(d,). Эквивалент дозы, который создается соответственно достроенным и распространенным полем в стандартном шаре МКРЕ на глубине d по радиусу с определенным направлением. Параметр, определенный в некоторой точке в поле излучения. Применяется как непосредственно измеряемая величина, которая представляет (в качестве замены) эквивалентную дозу в коже для использования при мониторинге внешнего облучения. Рекомендуемая глубина d для слабопроникающего излучения равна 0,07 мм. Эквивалент персональной (индивидуальной) дозы, Hp(d) personal dose equivalent, Hp(d) Эквивалент дозы в мягкой ткани ниже указанной точки на теле на соответствующей глубине d. Параметр, применяемый в ОНБ в виде непосредственно измеряемой величины, которая представляет (в качестве замены) эквивалентную дозу в тканях или органах, или (с d = 10 мм) эффективную дозу при индивидуальном мониторинге (индивидуальном дозиметрическом контроле) внешнего облучения. Рекомендованные значения d равны 10 мм для сильнопроникающего излучения и 0,07 мм для слабопроникающего излучения. ‘Мягкая ткань’ обычно интерпретируется как стандартный шар МКРЕ. Рекомендованы Международной комиссией по радиационным единицам и измерениям [17, 18] как упрощение двух разных терминов – эквивалент индивидуальной дозы, проникающее излучение, Hp(d) individual dose equivalent, penetrating, Hp(d) и эквивалент индивидуальной дозы, поверхностное излучение, Hs(d) individual dose equivalent, superficial, Hs(d), определение которых приводится в [19].
    [Глоссарий МАГАТЭ по вопросам безопасности]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > dose equivalent quantities

  • 6 grandeur directement mesurable

    Французско-русский универсальный словарь > grandeur directement mesurable

  • 7 influence quantity

    1. влияющая физическая величина
    2. влияющая величина (для счетчика электроэнергии)
    3. влияющая величина (в метрологии)
    4. влияющая величина

     

    влияющая величина
    Величина, измерение которой не предусмотрено данным средством измерений, но оказывающая влияние на результаты измерений величины, для которой предназначено средство измерений (ОСТ 45.159-2000.1 Термины и определения (Минсвязи России)).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    влияющая величина
    Величина, не являющаяся объектом измерения, но влияющая на значение измеряемой величины или показания измерительной аппаратуры.
    Примечание - Влияющая величина может быть внешней или внутренней по отношению к измерительной аппаратуре. Когда значение одной влияющей величины изменяется в пределах ее диапазона измерения, это может влиять на погрешность, обусловленную воздействием другой влияющей величины. Измеряемая величина или ее параметр могут сами воздействовать как влияющая величина. Например, для вольтметра значение измеряемого напряжения может приводить к дополнительной погрешности из-за нелинейности, или частота напряжения может также вызывать дополнительную погрешность.
    [МЭК 359,4.8]
    [ ГОСТ Р 61557-1-2006]

    влияющая величина
    Любая величина, которая может оказать влияние на рабочие характеристики СИ.
    Примечание. Влияющая величина обычно является внешним фактором, воздействующим на СИ.
    [ ГОСТ Р 51317.4.30-2008 (МЭК 61000-4-30:2008)]

    EN

    influence quantity
    any quantity which may affect the working performance of a measuring equipment
    NOTE This quantity is generally external to the measurement equipment.
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    influence quantity
    quantity not essential for the performance of an item but affecting its performance
    NOTE – For electric devices, typical influence quantities may be temperature, humidity, pressure.
    Source: 551-19-01 MOD
    [IEV number 151-16-31]

    FR

    grandeur d’influence
    grandeur susceptible d’affecter le fonctionnement d’un appareil de mesure
    NOTE Cette grandeur est généralement externe à l’appareil de mesure.
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    grandeur d'influence, f
    grandeur qui n'est pas essentielle au fonctionnement d'une entité mais qui a un effet sur son comportement
    NOTE – Pour les dispositifs électriques, la température, l'humidité et la pression sont souvent des grandeurs d'influence.
    Source: 551-19-01 MOD
    [IEV number 151-16-31]

    Тематики

    • метрология, основные понятия

    EN

    FR

    • grandeur d’influence

     

    влияющая величина
    любая величина или любой фактор, обычно воздействующие на счетчик извне, способные оказать влияние на его рабочие характеристики.
    [ ГОСТ 6570-96]

    EN


    FR


    Тематики

    EN

    DE

    FR

     

    влияющая физическая величина
    влияющая величина

    Физическая величина, оказывающая влияние на размер измеряемой величины и (или) результат измерений.
    [РМГ 29-99]

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

    DE

    FR

    3.24 влияющая величина (influence quantity): Величина, которая не представляет собой объект измерения, но ее изменение влияет на отношение между показанием и результатом измерения. (См. стандарт [11], статья 3.1.14.)

    Примечание - Влияющая величина может быть внешней или внутренней по отношению к измерительной аппаратуре. Изменение значения одной влияющей величины в пределах ее диапазона измерения может влиять на погрешность, обусловленную воздействием другой влияющей величины. Измеряемая величина или ее параметр может непосредственно воздействовать как влияющая величина. Например, для вольтметра изменение значения измеряемого напряжения может приводить к дополнительной погрешности из-за нелинейности или изменение частоты напряжения может также вызывать дополнительную погрешность.

    Источник: ГОСТ Р 54127-1-2010: Сети электрические распределительные низковольтные напряжением до 1000 В переменного тока и 1500 В постоянного тока. Электробезопасность. Аппаратура для испытания, измерения или контроля средств защиты. Часть 1. Общие требования оригинал документа

    влияющая величина (influence quantity): Величина, которая не является измеряемой, но оказывает влияние на результат измерений.

    [Международный словарь [1]]

    (Например, температура или уровень влажности наблюдаются или записываются в момент измерений).

    Источник: ГОСТ Р 8.726-2010: Государственная система обеспечения единства измерений. Датчики весоизмерительные. Общие технические требования. Методы испытаний оригинал документа

    3.13 влияющая величина (influence quantity): Величина, которая не представляет собой объект измерения, но влияет на результат измерения.

    Примечания

    1. Влияющая величина может быть как внешним, так и внутренним фактором в отношении газоанализатора.

    2. Когда значение одной из влияющих величин изменяется в пределах своего диапазона, может возникнуть погрешность из-за другой влияющей величины.

    3. Измеряемая величина или параметры ее состояния могут быть самостоятельно действующими влияющими величинами. Например, для инфракрасного анализатора водяного пара парциальное давление водяного пара влияет на спектр поглощения так, что длинная ячейка при низком парциальном давлении воды не может моделироваться короткой ячейкой с более высоким парциальным давлением.

    Источник: ГОСТ Р МЭК 61207-1-2009: Газоанализаторы. Выражение эксплуатационных характеристик. Часть 1. Общие положения оригинал документа

    3.12 влияющая величина (influence quantity): Любая величина, которая может оказать влияние на рабочие характеристики СИ.

    Примечание - Влияющая величина обычно является внешним фактором, воздействующим на СИ.

    Источник: ГОСТ Р 51317.4.30-2008: Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии оригинал документа

    3.1.34 влияющая величина (influence quantity): Величина, не являющаяся объектом измерения, но влияющая на значение измеряемой величины или показания измерительной аппаратуры [МЭК 359,4.8].

    Примечание - Влияющая величина может быть внешней или внутренней по отношению к измерительной аппаратуре. Когда значение одной влияющей величины изменяется в пределах ее диапазона измерения, это может влиять на погрешность, обусловленную воздействием другой влияющей величины. Измеряемая величина или ее параметр могут сами воздействовать как влияющая величина. Например, для вольтметра значение измеряемого напряжения может приводить к дополнительной погрешности из-за нелинейности, или частота напряжения может также вызывать дополнительную погрешность.

    Источник: ГОСТ Р МЭК 61557-1-2005: Сети электрические распределительные низковольтные напряжением до 1000 В переменного тока и 1500 В постоянного тока. Электробезопасность. Аппаратура для испытания, измерения или контроля средств защиты. Часть 1. Общие требования оригинал документа

    Англо-русский словарь нормативно-технической терминологии > influence quantity

  • 8 первичный измерительный преобразователь

    1. sensor

     

    первичный измерительный преобразователь
    первичный преобразователь
    ПИП

    Измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина, т.е. первый преобразователь в измерительной цепи измерительного прибора (установки, системы).
    Примечание. В одном средстве измерений может быть несколько первичных преобразователей.
    Примеры
    1. Термопара в цепи термоэлектрического термометра.
    2. Ряд первичных преобразователей измерительной контролирующей системы, расположенных в разных точках контролируемой среды
    [РМГ 29-99]

    .

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

    DE

    FR

    3.2 первичный измерительный преобразователь (sensor): Измерительный преобразователь, на который непосредственно воздействует явление, физический объект или вещество, являющееся носителем величины, подлежащей измерению.

    Примеры

    1 Чувствительная катушка платинового термометра сопротивления.

    2 Ротор турбинного расходомера.

    3 Трубка Бурдона в манометре.

    4 Фотоэлемент спектрометра.

    5 Термотропный жидкий кристалл, который изменяет цвет в зависимости от температуры.

    Источник: ГОСТ Р 8.673-2009: Государственная система обеспечения единства измерений. Датчики интеллектуальные и системы измерительные интеллектуальные. Основные термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > первичный измерительный преобразователь

  • 9 sensor

    1. чувствительный элемент
    2. сенсор
    3. первичный измерительный преобразователь
    4. датчик (металлургия)
    5. датчик (в автотранспортных средствах)
    6. датчик

     

    датчик
    Средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем (по РМГ 29).
    [ ГОСТ Р 51086-97]

    датчик

    Конструктивно обособленный первичный преобразователь, от которого поступают измерительные сигналы (он «дает» информацию).
    Примечания
    1. Датчик может быть вынесен на значительное расстояние от средства измерений, принимающего его сигналы.
    2. В области измерений ионизирующих излучений применяют термин детектор.
    Пример. Датчики запущенного метеорологического радиозонда передают измерительную информацию о температуре, давлении, влажности и других параметрах атмосферы.
    [РМГ 29-99]

    датчик
    Конструктивно обособленный первичный преобразователь, от которого поступают измерительные сигналы.
    [РД 01.120.00-КТН-228-06]

    датчик
    Первичный преобразователь, в котором изменения значений выходного воздействия или сигнала с заданной точностью соответствуют изменениям значений входного воздействия или сигнала.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]


    КЛАССИФИКАЦИЯ

    Классификация по виду выходных величин

    Классификация по измеряемому параметру

    Классификация по принципу действия

    Классификация по характеру выходного сигнала

    Классификация по среде передачи сигналов

    Классификация по количеству входных величин

    Классификация по технологии изготовления

    [ http://omop.su/article/49/74929.html]

    Тематики

    Обобщающие термины

    EN

     

    датчик
    Компонент, сконструированный для идентификации передачи на контроллер данных о характере вращения одного или более колеса транспортного средства в процессе торможения.
    [ ГОСТ Р 41.13-2007]

    датчик
    Элемент, предназначенный для определения и передачи регуляторам сигнала, касающегося условий вращения колес(а) или динамических условий движения транспортного средства.
    [ ГОСТ Р 41.13-Н-99]

    Тематики

    EN

     

    датчик
    Элемент (первичный преобразователь) измерит., сигнального регулир. или управл. устрва системы, преобраз. контролир. величину (давление, темп-ру, частоту, скорость, перемещение, напряжение, электрич. ток и т.п.) в сигнал, удобный для измерения, передачи, преобразования, хранения и регистрации, а также для воздействия им на управляемые процессы. В состав д. входит воспринимающий (чувствит.) орган и один или неск. промежут. преобразователей. Часто д. состоит только из одного воспринимающего органа (напр., термопара, тензодатчик и др.).
    В металлургии наиболее распространены д., действие к-рых основано на изменении электрич. сопротивления, емкости и индуктивности электрич. цепи (реостатный, емкостной, индуктивный датчик и др.), а также на возникновении ЭДС при воздействии контролир. механич., тепловых, электрических, магнитных и оптич. величин (тензодатчик, датчик перемещения, пьезоэлектрический датчик, датчик давления, фотоэлемент).
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    первичный измерительный преобразователь
    первичный преобразователь
    ПИП

    Измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина, т.е. первый преобразователь в измерительной цепи измерительного прибора (установки, системы).
    Примечание. В одном средстве измерений может быть несколько первичных преобразователей.
    Примеры
    1. Термопара в цепи термоэлектрического термометра.
    2. Ряд первичных преобразователей измерительной контролирующей системы, расположенных в разных точках контролируемой среды
    [РМГ 29-99]

    .

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

    DE

    FR

     

    сенсор
    Высокочувствительная составная часть извещателя, датчика, предназначенная для регистрации и преобразования сигналов о нормированном изменении контролируемого параметра в электрические сигналы о нормированном изменении контролируемого параметра (упругих волн, давления, физического состояния).
    [РД 25.03.001-2002] 

    Тематики

    EN

     

    чувствительный элемент
    Часть управляющего устройства, предназначенная для восприятия воздействующей величины, на которую реагирует чувствительное управляющее устройство.
    [ГОСТ IЕС 60730-1-2011]

    чувствительный элемент
    датчик


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    EN

    sensing element
    that part of the control which is intended to be exposed to the influences of the activating quantity to which the automatic action of a sensing control responds
    [IEC 60730-1, ed. 5.0 (2013-11)]

    FR

    élément sensible
    partie d'un dispositif de commande qui est destinée à être exposée à l'influence de la grandeur de manœuvre à laquelle répond l'action automatique d'un dispositif sensible
    [IEC 60730-1, ed. 5.0 (2013-11)]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

    FR

    3.46 датчик (sensor): Сборочная единица, в которой расположен чувствительный элемент, которая также может содержать элементы электрической схемы.

    Источник: ГОСТ Р 52350.29.2-2010: Взрывоопасные среды. Часть 29-2. Газоанализаторы. Требования к выбору, монтажу, применению и техническому обслуживанию газоанализаторов горючих газов и кислорода оригинал документа

    3.3. датчик (sensor): Элемент конструкции коврика или пола, реагирующего на давление, содержащий эффективную чувствительную область; воздействие силы на эту область заставляет изменять состояние сигнала от датчика до блока управления.

    x004.jpg

    1 - обработка выходного сигнала коврика или пола, реагирующего на давление; 6 - воздействующая сила; 7 - выход датчика;

    Рисунок 1 - Схема конструкции коврика или пола, реагирующего на давление, для работы с машиной

    Источник: ГОСТ ЕН 1760-1-2004: Безопасность машин. Защитные устройства, реагирующие на давление. Часть 1. Основные принципы конструирования и испытаний ковриков и полов, реагирующих на давление

    3.2 первичный измерительный преобразователь (sensor): Измерительный преобразователь, на который непосредственно воздействует явление, физический объект или вещество, являющееся носителем величины, подлежащей измерению.

    Примеры

    1 Чувствительная катушка платинового термометра сопротивления.

    2 Ротор турбинного расходомера.

    3 Трубка Бурдона в манометре.

    4 Фотоэлемент спектрометра.

    5 Термотропный жидкий кристалл, который изменяет цвет в зависимости от температуры.

    Источник: ГОСТ Р 8.673-2009: Государственная система обеспечения единства измерений. Датчики интеллектуальные и системы измерительные интеллектуальные. Основные термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > sensor

  • 10 biological threshold limit value

    биологическая величина порогового предела (пороговая концентрация вещества, измеряемая либо непосредственно в тканях, жидкостях тела или выдыхаемом воздухе, либо косвенно по специфическому действию вещества на организм)

    Англо-русский словарь промышленной и научной лексики > biological threshold limit value

  • 11 первичный измерительный преобразователь

    1. Messtühler
    2. Aufnehmer

     

    первичный измерительный преобразователь
    первичный преобразователь
    ПИП

    Измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина, т.е. первый преобразователь в измерительной цепи измерительного прибора (установки, системы).
    Примечание. В одном средстве измерений может быть несколько первичных преобразователей.
    Примеры
    1. Термопара в цепи термоэлектрического термометра.
    2. Ряд первичных преобразователей измерительной контролирующей системы, расположенных в разных точках контролируемой среды
    [РМГ 29-99]

    .

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > первичный измерительный преобразователь

  • 12 расходомер жидкости (газа)

    1. Durchflußmeßgerät

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-немецкий словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 13 débitmètre

    1. расходомер жидкости (газа)
    2. расходомер (в медицине)
    3. дозиметр мощности поглощенной (эквивалентной) дозы излучения

     

    дозиметр мощности поглощенной (эквивалентной) дозы излучения
    -
    [ ГОСТ 14337-78]

    Тематики

    • средства измерений ионизир. излучений

    EN

    FR

     

    расходомер
    Устройство, которое показывает объемный расход определенного газа или газовой смеси
    [ ГОСТ Р 52423-2005]

    Тематики

    • ингаляц. анестезия, искусств. вентиляц. легких

    EN

    DE

    FR

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Франко-русский словарь нормативно-технической терминологии > débitmètre

  • 14 gain de puissance

    1. коэффициент усиления мощности генераторной лампы

     

    коэффициент усиления мощности генераторной лампы
    усиление мощности

    Отношение выходной мощности к мощности возбуждения генераторной лампы.
    Примечание
    Величина расчетная (непосредственно не измеряемая).
    Коэффициент усиления мощности генераторной лампы выражается в безразмерных единицах или в децибелах.
    [ ГОСТ 20412-75]

    Тематики

    Синонимы

    EN

    FR

    58. Коэффициент усиления мощности генераторной лампы*

    Усиление мощности

    E. Power gain

    F. Gain de puissance

    Отношение выходной мощности к мощности возбуждения генераторной лампы.

    Примечание. Коэффициент усиления мощности генераторной лампы выражается в безразмерных единицах или в децибелах

    Источник: ГОСТ 20412-75: Лампы генераторные, модуляторные и регулирующие. Термины и определения оригинал документа

    Франко-русский словарь нормативно-технической терминологии > gain de puissance

  • 15 capteur

    1. первичный измерительный преобразователь

     

    первичный измерительный преобразователь
    первичный преобразователь
    ПИП

    Измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина, т.е. первый преобразователь в измерительной цепи измерительного прибора (установки, системы).
    Примечание. В одном средстве измерений может быть несколько первичных преобразователей.
    Примеры
    1. Термопара в цепи термоэлектрического термометра.
    2. Ряд первичных преобразователей измерительной контролирующей системы, расположенных в разных точках контролируемой среды
    [РМГ 29-99]

    .

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > capteur

  • 16 Aufnehmer

    1. первичный измерительный преобразователь
    2. загрузочная камера

     

    загрузочная камера
    Ндп.
    тигель
    загрузочное пространство
    Пространство в пресс-форме, предназначенное для размещения и сжатия определенного количества резиновой смеси, необходимого для получения одного или нескольких изделий.
    [ ГОСТ 23165-78]

    Недопустимые, нерекомендуемые

    Тематики

    • пресс-формы для резинотехн. изделий

    Обобщающие термины

    EN

    DE

    FR

     

    первичный измерительный преобразователь
    первичный преобразователь
    ПИП

    Измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина, т.е. первый преобразователь в измерительной цепи измерительного прибора (установки, системы).
    Примечание. В одном средстве измерений может быть несколько первичных преобразователей.
    Примеры
    1. Термопара в цепи термоэлектрического термометра.
    2. Ряд первичных преобразователей измерительной контролирующей системы, расположенных в разных точках контролируемой среды
    [РМГ 29-99]

    .

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Aufnehmer

  • 17 Messtühler

    1. первичный измерительный преобразователь

     

    первичный измерительный преобразователь
    первичный преобразователь
    ПИП

    Измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина, т.е. первый преобразователь в измерительной цепи измерительного прибора (установки, системы).
    Примечание. В одном средстве измерений может быть несколько первичных преобразователей.
    Примеры
    1. Термопара в цепи термоэлектрического термометра.
    2. Ряд первичных преобразователей измерительной контролирующей системы, расположенных в разных точках контролируемой среды
    [РМГ 29-99]

    .

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Messtühler

  • 18 Durchflußmeßgerät

    1. расходомер жидкости (газа)
    2. расходомер (в медицине)

     

    расходомер
    Устройство, которое показывает объемный расход определенного газа или газовой смеси
    [ ГОСТ Р 52423-2005]

    Тематики

    • ингаляц. анестезия, искусств. вентиляц. легких

    EN

    DE

    FR

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Durchflußmeßgerät

  • 19 коэффициент усиления мощности генераторной лампы

    1. power gain

     

    коэффициент усиления мощности генераторной лампы
    усиление мощности

    Отношение выходной мощности к мощности возбуждения генераторной лампы.
    Примечание
    Величина расчетная (непосредственно не измеряемая).
    Коэффициент усиления мощности генераторной лампы выражается в безразмерных единицах или в децибелах.
    [ ГОСТ 20412-75]

    Тематики

    Синонимы

    EN

    FR

    58. Коэффициент усиления мощности генераторной лампы*

    Усиление мощности

    E. Power gain

    F. Gain de puissance

    Отношение выходной мощности к мощности возбуждения генераторной лампы.

    Примечание. Коэффициент усиления мощности генераторной лампы выражается в безразмерных единицах или в децибелах

    Источник: ГОСТ 20412-75: Лампы генераторные, модуляторные и регулирующие. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > коэффициент усиления мощности генераторной лампы

  • 20 расходомер жидкости (газа)

    1. flowmeter

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > расходомер жидкости (газа)

См. также в других словарях:

  • влияющая величина — 3.5.1 влияющая величина: Любая величина, обычно внешняя по отношению к переключателю, которая может оказать влияние на его рабочие характеристики. Источник: ГОСТ Р МЭК 61038 2001: Учет электроэнергии. Тарифик …   Словарь-справочник терминов нормативно-технической документации

  • ИЗМЕРЕНИЕ — представление свойств реальных объектов в виде числовой величины, один из важнейших методов эмпирического познания. В самом общем случае величиной называют все то, что может быть больше или меньше, что может быть присуще объекту в большей или… …   Философская энциклопедия

  • величины эквивалента дозы — Эквивалент амбиентной дозы, H*(d) ambient dose equivalent, H*(d). Эквивалент дозы, который создается соответственно достроенным и распространенным полем в стандартном шаре МКРЕ на глубине d по радиусу, имеющему направление, противоположное… …   Справочник технического переводчика

  • РАДИОАСТРОНОМИЯ — раздел астрофизики, изучающий радиоизлучение астр. объектов. Р. зародилась в нач. 30 х гг., когда К. Янский (К. Jansky) исследовал влияние помех на радиотелефонную связь и обнаружил изменение уровня шумов приёмника, коррелирующее с периодом… …   Физическая энциклопедия

  • ПЕРВИЧНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ — 5.1.16. ПЕРВИЧНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ Первичный преобразователь Датчик Измерительный преобразователь, к которому подведена измеряемая величина, т.е. первый в измерительной цепи (5.1.21). Примеры. Термопара в цепи термоэлектрического… …   Словарь-справочник терминов нормативно-технической документации

  • СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО "Газпром". Термины и определения — Терминология СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО "Газпром". Термины и определения: 3.1.31 абонент энергоснабжающей организации : Потребитель электрической энергии (тепла), энергоустановки которого присоединены к сетям… …   Словарь-справочник терминов нормативно-технической документации

  • ИЗМЕРЕНИЕ — последовательность эксперим. и вычислит. операций, осуществляемая с целью нахождения значения физ. величины, характеризующей нек рый объект или явление. И. завершается определением степени приближения найденного значения к истинному значению… …   Физическая энциклопедия

  • ГОСТ Р 50779.10-2000: Статистические методы. Вероятность и основы статистики. Термины и определения — Терминология ГОСТ Р 50779.10 2000: Статистические методы. Вероятность и основы статистики. Термины и определения оригинал документа: 2.3. (генеральная) совокупность Множество всех рассматриваемых единиц. Примечание Для случайной величины… …   Словарь-справочник терминов нормативно-технической документации

  • Измерение —         операция, посредством которой определяется отношение одной (измеряемой) величины к другой однородной величине (принимаемой за единицу); число, выражающее такое отношение, называется численным значением измеряемой величины.          И.… …   Большая советская энциклопедия

  • МИ 2365-96: Государственная система обеспечения единства измерений. Шкалы измерений. Основные положения. Термины и определения — Терминология МИ 2365 96: Государственная система обеспечения единства измерений. Шкалы измерений. Основные положения. Термины и определения: Абсолютная погрешность измерений (абсолютная погрешность) Погрешность измерений, выраженная в единицах… …   Словарь-справочник терминов нормативно-технической документации

  • ФЕРп 2001: Приложения (редакция 2009 г.). Приложения. Федеральные единичные расценки на пусконаладочные работы — Терминология ФЕРп 2001: Приложения (редакция 2009 г.). Приложения. Федеральные единичные расценки на пусконаладочные работы: Автоматизированная система АС Система, состоящая из персонала и комплекса средств автоматизации его деятельности,… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»